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The kinetic potential of nucleation theory is used to describe droplet growth processes in a cloud.
Drizzle formation is identified as a statistical barrier-crossing phenomenon that transforms cloud
droplets to drizzle size with a rate dependent on turbulent diffusion, droplet collection, and size
distribution. Steady-state and transient drizzle rates are calculated for typical cloud conditions. We find
drizzle more likely under transient conditions. The model quantifies an important indirect effect of
aerosols on climate-drizzle suppression in clouds of higher droplet concentration.
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molecules, whereby single molecules are exchanged with
a surrounding vapor, and each step can be represented by �g � �cond

g � �coll
g : (6)
Clouds and precipitation play crucial roles in regulat-
ing Earth’s energy balance and water cycle [1]. Although
it has been well established that three basic physical
processes (nucleation, condensation, and collection) are
involved in the formation of warm rain where the ice
phase plays no role, many issues regarding the initiation
of warm rain remain unsolved [2–5]. One of the funda-
mental problems that has long frustrated the cloud
physics community is an explanation for the production
of droplets with radii around 20 �m. On one hand, clas-
sical condensation theory cannot adequately explain the
formation of these droplets because of their slow con-
densation growth rate. On the other hand, for water
droplets falling in still air, growth by collection is very
slow until some droplets have reached radii in excess of
20 �m [6]. For example, Jonas [3] calculated droplet
growth by condensation and collection in still air, and
found that the growth of a droplet from 10 �m radius to
20 �m by condensation at a typical supersaturation of
0.2% takes about 20 min while growth by collection
from 20 �m to drizzle drops ( � 100 �m radius) in a
cloud with a liquid water content of 1 gm�3 would
take 1 h. The combined growth time is much greater
than the lifetime of typical precipitation cumulus clouds
( � 30 min). Much progress has been made over the last
few decades, especially in understanding the role of cloud
turbulence, which is believed to enhance both condensa-
tion growth and the collection process by small droplets
[2–5]. Nevertheless, the details of these turbulent effects
remain illusive and highly controversial. In this Letter we
attack this problem by extending the theory of statistical
crossing of a kinetic barrier in nucleation to the processes
of condensation and collection. The new theory admits a
critical droplet size, here approximately 20–30 �m in
radius, having balanced condensation, collection, and
evaporation rates. We show that significant drizzle rates
can occur even though cloud lifetimes may be too short to
reach steady state.

Consider the nucleation of a water droplet containing g
0031-9007=03=90(1)=018501(4)$20.00 
the equilibrium:

Ag � A1 � Ag�1; (1)

where A1 represents the water vapor monomer and Ag a
drop of size g. Under conditions of stable or (constrained)
metastable equilibrium, detailed balance gives

�gng � �g�1ng�1; (2)

where �g (s�1) is the rate of monomer condensation on the
drop, �g the corresponding evaporation rate, and ng
(cm�3) is the constrained equilibrium concentration of
drops of size g. According to Eq. (2), ng can be written in
the product form:
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Alternatively, in Boltzmann form,

ng � n1 exp��W�g�=kT	; (4)

where W�g�=kT is the reduced thermodynamic potential
for droplet formation from the vapor. Combination of
Eqs. (3) and (4) gives

W�g�
kT

� � ln

�Yg�1

i�1

�i

�i�1

�

 ��g�; (5)

where ��g� is the kinetic potential [7].
The kinetic and reduced thermodynamic potentials are

equivalent in nucleation theory. However, the kinetic
potential is more general in that it is defined solely in
terms of rate constants, even in the absence of a well-
defined equilibrium condition. Here the kinetic potential
is applied to study the initiation of warm rain. The growth
of cloud droplets is represented as a sum of contributions
from condensation and collection processes:
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Collection refers to the enhanced growth of those rare
droplets large enough to have a gravitational fall speed
that allows aggregation with smaller, typical cloud size
droplets in the 10 �m radius range.

We first consider the rate for condensation growth
�cond. Describing evaporation and growth as random
events results in Brownian-like fluctuations along the g
coordinate and a distribution of droplet sizes. For cloud
droplets these fluctuations will be similar to fluctuations
in molecular cluster size during nucleation [8], but on the
much larger scale of turbulent fluctuations in growth rate.
The diffusion coefficient in number space is D � �l2=2
and has units of s�1 where � is the total number of
displacements per unit time (with both forward and re-
verse jumps counted) and l is the number of molecules per
jump [9]. For single-molecule jumps l � 1 and D�g� �
�cond

g for equal forward and reverse rates [8]. The mean
square displacement after time t is �2

g � 2Dt. Consider a
1% change in drop radius from 10 to 10:1 �m resulting in
an increase in the number of molecules present in the drop
by �g � 4:2� 1012 occurring diffusively on the time
scale t1% � ��g�2=2�cond

g . We determine �cond
g through

the assignment of a reasonable range of values to t1%.
For example, for t1% � 1 s we obtain the effective diffu-
sion coefficient, D � �cond

g � 9� 1024 s�1. For compar-
ison, diffusion-controlled growth of a cloud droplet under
a supersaturation of 0.2%, a typical value for the fluctuat-
ing supersaturation in cloud, gives a t1% of about 1 s. We
will parametrize the effects of turbulence on cloud drop-
let growth using values of t1% in the range 0.1–10 s, and
treat �cond

g as size independent. Longer times would not
allow for significant fluctuations in drop size over the
lifetime of a cloud and shorter times would imply growth
rates faster than are likely to occur for the typical range
of supersaturation found in clouds.

Next, we need to represent the complicated interactions
between cloud droplets due, for example, to the competi-
tion for available water vapor. For this, we introduce an
effective evaporation rate �eff

g determined from �cond
g so

as to yield a reasonable cloud droplet distribution through
detailed balance. Examination of typical cloud droplet
distributions [10,11] shows that these are well approxi-
mated by a maximum entropy distribution subject to the
constraint that total liquid water per unit volume is con-
served. This gives the exponential form [10]:

ng �
ND

a
exp��g=a�; (7)

where ND is the number of droplets per cm3 and 1=a is a
parameter controlling the falloff of the distribution. For
an average particle radius of 10 �m, a � 1:67� 1014.
The drop volume fraction is L � NDa�1. For small drop-
lets (g � a) the concentration for each size g approaches
ND=a, an important boundary condition for calculating
the drizzle rate. Substitution of Eq. (7) into the detailed
balance condition [Eq. (2)] gives
018501-2
ng�1

ng
�

�cond
g

�eff
g�1


�cond

g

�eff
g

� exp��1=a�; (8)

where the last equality defines the effective evapora-
tion rate.

Finally, we turn to the collection process. The rate of
volumetric gain of a specified drop of volume x falling
through a population of smaller droplets, having volume
distribution function f�y�, is given by

dx
dt

�
Z 1

0
K�x; y�yf�y�dy: (9)

The collection kernel depends generally on the collection
efficiency E and the terminal velocity V and is given
by [6]
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2
�V�x� � V�y�	:

(10)

Collection is represented, according to Eq. (9), as a
single-particle growth process that takes place in a me-
dium of the smaller cloud droplets specified by f�y�. For
collector drops of radius less than 50 �m the kernel is
well approximated [12] by K�x; y� � 1:1� 1010x2, where
K has units of cm3 s�1. Substitution in Eq. (9) gives

dx
dt

� 1:1� 1010x2L; (11)

where L �
R
1
0 yf�y�dy is the cloud liquid water volume

fraction. Converting to an effective collection rate gives

�coll
g 


dg
dt

�
1

�1

dx
dt

� 3:3� 10�13g2L; (12)

where �1 � 3:0� 10�23 cm3 is the molecular volume of
liquid water. It is safe to assume that the collection
process does not affect the evaporation rate because no
significant breakup occurs for drops of this size.
Equations (8) and (12) and the assignment of t1% fully
determine the rate constants and kinetic potential
[Eqs. (5) and (6)] for the model.

Figure 1 shows the kinetic potential as a function of
drop radius. Results are for a cloud drop volume fraction
of 5� 10�7 (equal to 0:5 gm�3) for a liquid water density
� � 1 g cm�3), and droplet number densities of 100 and
300 cm�3 corresponding to average cloud droplet radii of
10.6 and 7:4 �m, respectively. The inset shows a simula-
tion of growth fluctuations for a subcritical 10 �m drop
under these conditions obtained using a stochastic model
[9]. Solid and dashed curves are the potentials with and
without collection, respectively. The potential maximum
defines a critical droplet radius, r�, for which the forward
and reverse growth rates are in balance, �cond

g � �coll
g �

�eff
g . Figure 1 shows the dramatic effect of a decrease in

droplet concentration on lowering the kinetic barrier and
shifting r� to a smaller size, making rain more easy to
018501-2



FIG. 2. Steady-state barrier transmission current (cm�3 s�1.
Results are for a cloud liquid water content of 0:5 gm�3

and three different values of the turbulent condensation
growth rate.

FIG. 1. Kinetic potential with (full curves) and without
(dashed curves) collection for t1% � 0:1 s. Results are for a
cloud liquid water content of 0:5 gm�3 and two different
droplet number concentrations. The inset shows fluctuations
in single drop size in the precollection regime.
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occur in maritime, unpolluted clouds. Squires [13] pro-
posed that continental clouds are colloidally more stable
than their maritime counterparts because of a higher
aerosol (hence droplet) concentration and a smaller aver-
age droplet size. This hypothesis also serves as the micro-
physical basis for the second indirect effect of
anthropogenic aerosols on climate change [14]. The ki-
netic potential places this hypothesis on solid physical
ground.

The steady-state barrier-crossing rate (cm�3 s�1) can
be obtained, as in classical nucleation theory, using the
Becker-Doring kinetics model [15]:

Jss �
�X

g

1

�gng

�
�1
� n1

X
g

1

�g exp����g�	

�
ND

a

X
g

1

�g exp����g�	
; (13)

where the last equality applies to the droplet distribution
of Eq. (11). Replacing the sum by an integral and evaluat-
ing J gives the results shown in Fig. 2. As in nucleation
[15], the steady rate of Eq. (13) is independent of the
upper limit of summation so long as this is chosen to be
sufficiently larger than the critical size that any return
flux can be neglected.

To obtain the induction time for drizzle formation we
compute the transient barrier-crossing rate J�t� defined as
the flux (cm�3 s�1) across an arbitrary, but fixed postcrit-
ical drop radius, rG. At t � 0, the cloud droplet distribu-
tion is assumed to be specified by Eq. (11), which is the
equilibrium distribution in the absence of collection.
Collection is turned on at this time and the subsequent
transient behavior, as J�t� increases from zero to its
steady-state value, is shown in Fig. 3 for rG � 40 �m.
These results were obtained for the present model using a
matrix approach previously developed to study transient
018501-3
nucleation [8,16]. This requires solving for the eigenval-
ues and eigenvectors of a Hermitian matrix, H, of order
equal to the number of distinct clusters included in the
calculation. In the present application this requires a
greatly reduced subsampled array of droplet sizes with
appropriately renormalized interactions. Subsampling by
a factor of h gives for diffusive transport along the array
�cond

d � �cond
g =h2 where now gi � hdi. With this renor-

malization of the condensation growth rate, the diffusion
constant D�h� is invariant to representation (D�h� �
�cond

d l2 � h2�cond
d � h2�cond

g =h2 � �cond
g � D) as re-

quired. Other observables including the barrier-crossing
rate are also invariant under this renormalization of the
condensation rate. Collection is a ballistic growth process
that takes place on the subsampled lattice at a linearly
reduced rate �coll

d � �coll
g =h. These renormalized parame-

ters together with the subsampled droplet population
n�h�
d � hng comprise the elements of H, from which the

time-dependent barrier-crossing rate is obtained. We
choose h such the number of sampled droplets (equal to
the order of H) is about 100. Results from the transient
calculations are presented in Fig. 3 at two different cloud
liquid water loadings. The approach to steady state is
faster (shorter induction time) at the higher loading in
part because of the larger initial droplet size (see caption).
These and other calculations suggest that while drizzle
formation is not likely to reach a steady-state rate on the
( � 1 h) lifetime of a typical cloud, a significant fraction
of the steady-state formation rate can occur.

For practical applications it is useful to express results
in terms of the total rate of drizzle formation in a vertical
column of cloud. A convenient measure is cloud liquid
water path (LWP). For a uniform cloud the column rate is
R�cm�2 s�1� � 10�4J � LWP=�L for LWP in gm�2.
Cloud LWP’s inferred from satellite measurements vary
greatly, tending to cluster in the 50–300 gm�2 range
[17,18]. Drizzle rate from stratocumulus clouds could be
018501-3



FIG. 3. Transient barrier transmission rate divided by the
steady-state rate versus log time in sec. The initial cloud droplet
distribution follows Eq. (11), which is the Boltzmann distribu-
tion in the absence of collection. Collection is turned on at t �
0 and the subsequent transient behavior during the approach to
steady state is shown in the figure. Results are for t1% � 0:1 s,
ND � 100, and cloud liquid water content (LWC) of 0:5 gm�3

(solid curve) and 1:0 gm�3 (dashed curve). Under these con-
ditions JSS � 3� 10�5 cm�3 s�1 for LWC � 0:5 gm3 and 4�
10�3 for LWC � 1:0 gm�3.
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as small as  0:01 mmh�1 and as large as  1 mmh�1

[19,20]. Thus observable rates of drizzle formation, as-
suming a radius of 100 �m for the collected droplets,
require J � 10�6 to 10�5 cm�3 s�1. From Figs. 2 and 3,
we see that such rates will occur most frequently for
clouds having fewer drops and after an appreciable lag
time, depending on the liquid water content of the cloud.

This Letter demonstrates application of the kinetic
potential beyond the nucleation field where it is usually
applied. Here the kinetic potential has been used in the
formulation of a new model for warm rain initiation—a
nonequilibrium model for which only the forward and
reverse rates of a sequence of elementary reaction steps
are known. The new model is consistent with results from
the traditional models and with observations of signifi-
cant indirect effect that aerosols have on climate; by
increasing cloud droplet number density, aerosols sup-
press rain [21]. It also reveals that continental (polluted)
clouds are more colloidally stable because they have a
higher kinetic barrier and larger critical droplet sizes
compared to their maritime counterparts. Future devel-
opments of the model should attempt to include the ef-
fects of turbulence on cloud droplet size distribution and
collection kernel [22]. In addition to this particular prob-
018501-4
lem, the methods described here may be useful elsewhere
that phenomena viewed as related to nucleation arise.
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